We report the production of a hybrid catalyst electrode comprising semicrystalline molybdenum sulfide (MoS2+x) attached on nitrogen-doped carbon nanotubes. The nitrogen-doping of the carbon nanotubes stabilizes a semicrystalline structure of MoS2+x with a high exposure of active sites for HER resulting in enhanced catalytic activity. The results are published in the journal of Advanced Functional Materials. Joakim Ekspong, Tiva Sharifi, Andrey Shchukarev, Alexey Klechikov, Thomas Wågberg, and Eduardo Gracia-Espino. Adv. Funct. Mater, 2016. DOI: 10.1002/adfm.201601994 Abstract Finding an abundant and cost-effective electrocatalyst for the hydrogen evolution reaction (HER) is crucial for a global production of hydrogen from water electrolysis. This work reports an exceptionally large surface area hybrid catalyst electrode comprising semicrystalline molybdenum sulfide (MoS2+x) catalyst attached on a substrate based on nitrogen-doped carbon nanotubes (N-CNTs), which are directly grown on carbon fiber paper (CP). It is shown here that nitrogen-doping of the carbon nanotubes improves the anchoring of MoS2+x catalyst compared to undoped carbon nanotubes and concurrently stabilizes a semicrystalline structure of MoS2+x with a high exposure of active sites for HER. The well-connected constituents of the hybrid catalyst are shown to facilitate electron transport and as a result of the good attributes, the MoS2+x/N-CNT/CP electrode exhibits an onset potential of −135 mV for HER in 0.5 m H2SO4, a Tafel slope of 36 mV dec−1, and high stability at a current density of −10 mA cm−2.
0 Comments
We produced an efficient electrocatalyst for both water splitting half reactions in the same medium, where the catalyst compromise Co3O4 nanospheres attached on the surface of nitrogen-doped carbon nanotubes, which in turn are directly grown on conductive carbon paper. The firm and well-established interfaces along the electrode play a crucial role on enhanced stability and electrochemical activity observed for both oxygen evolution reaction and hydrogen reduction reaction. The manuscript has been published in the ACS Applied Materials and Interfaces.
Abstract We report efficient electrolysis of both water splitting half reactions in the same medium, by a bifunctional 3D electrode comprising Co3O4 nanospheres nucleated on the surface of nitrogen-doped carbon nanotubes (NCNTs) which in turn are grown on conductive carbon paper (CP). The resulting electrode exhibits high stability and large electrochemical activity for both oxygen and hydrogen evolution reactions (OER and HER). We obtain a current density of 10 mA/cm2 in 0.1 M KOH solution at overpotentials of only 0.47 V and 0.38 V for OER and HER respectively. Additionally, the experimental observations are understood and supported by analyzing the Co3O4:NCNT and NCNT:CP interfaces by ab initio calculations. Both the experimental and the theoretical studies indicate that firm and well-established interfaces along the electrode play a crucial role on the stability and electrochemical activity for both OER and HER.
This time we used density functional theory to compute the stability of SWNT fragments of all chiralities, which we compare to the chiralities of actual CVD products from diverse experiments. We found that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. The manuscript is published in the journal of Scientific Reports and can be download below.
Abstract Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product’s relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth.
Our most recent work has been published in the journal of Nano letters. This time we introduced C60 fullerenes inside collapsed carbon nanotubes. The overfilling of the collapsed tubes allows a complete reinflation, where the C60 core shows a well defined crystalline structure. This work has been published as an open access, the file can be downloaded here. Hamid R. Barzegar, Eduardo Gracia-Espino, Aiming Yan, Claudia Ojeda-Aristizabal, Gabriel Dunn, Thomas Wågberg, and Alex Zettl. Nano letters 15, 829–834 (2015) AbstractWe examine a variant of so-called carbon nanotube peapods by packing C60 molecules inside the open edge ducts of collapsed carbon nanotubes. C60 insertion is accomplished through a facile single-step solution-based process. Theoretical modeling is used to evaluate favorable low-energy structural configurations. Overfilling of the collapsed tubes allows infiltration of C60 over the full cross-section of the tubes and consequent partial or complete reinflation, yielding few-wall, large diameter cylindrical nanotubes packed with crystalline C60 solid cores.
|
Nano for Energy group
Categories
All
Featured publications![]() Comprehensive Study of an Earth-Abundant Bifunctional 3D Electrode for Efficient Water Electrolysis in Alkaline Medium.
ACS Appl. Mater. Interfaces, 2015, 7, 28148 ![]() ![]() Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets.
ACS Nano, 2015, 9, 10516 ![]() Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries.
J. P. Sources, 2015, 279, 581 .Self-Assembly Synthesis of Decorated Nitrogen-Doped Carbon Nanotubes with ZnO Nanoparticles: Anchoring Mechanism and the Effects of Sulfur.
J. Phys. Chem. C, 120, 27849 (2016) Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant.
Sci Rep. 2016; 6: 23183. Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles.
Catal. Sci. Technol., 2016, 6, 1393-1401 Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway.
Nano Res. (2016) 9: 1956. |