This work was performed in collaboration with Prof. Guangzhi Hu from the University of Chinese Academy of Sciences. Here we report the microwave-assisted synthesis of Mo-doped FeNi3 nanoparticles as excellent oxygen evolution electrocatalyst. Our results were published in the journal of Electrochemistry Communications. Hangjia Shen, Eduardo Gracia-Espino, Le Wang, Dan feng Qin, Sanshuang Gao, Xamxikamar Mamat, Wei Ren, Thomas Wågberg, Guangzhi Hu. Electrochem. Commun. 81, 116-119 (2017) Abstract Oxygen evolution reaction (OER) plays a pivotal role in water-splitting. Here, we report a facile method to synthesize multimetal supported on commercial carbon black via a time-saving microwave process. Crystalline FeNi3 nanoparticles homogeneously doped with Mo are formed via a microwave treatment and activated to metal oxyhydroxide in-situ during cyclic voltammetry test with overpotential of only 280 mV at 10 mA cm− 2 for OER in alkaline electrolyte, outperforming RuO2. Our synthesis methodology is a promising alternative for large-scale production, delivering a valuable contribution to catalyst preparation and electrocatalytic water oxidation research.
0 Comments
|
Nano for Energy group
Categories
All
Featured publications![]() Comprehensive Study of an Earth-Abundant Bifunctional 3D Electrode for Efficient Water Electrolysis in Alkaline Medium.
ACS Appl. Mater. Interfaces, 2015, 7, 28148 ![]() ![]() Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets.
ACS Nano, 2015, 9, 10516 ![]() Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries.
J. P. Sources, 2015, 279, 581 .Self-Assembly Synthesis of Decorated Nitrogen-Doped Carbon Nanotubes with ZnO Nanoparticles: Anchoring Mechanism and the Effects of Sulfur.
J. Phys. Chem. C, 120, 27849 (2016) Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant.
Sci Rep. 2016; 6: 23183. Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles.
Catal. Sci. Technol., 2016, 6, 1393-1401 Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway.
Nano Res. (2016) 9: 1956. |