Dear Colleagues,
Carbon nanostructures, such as single- and multiwalled carbon nanotubes, carbon fibers, and fullerenes have attracted a tremendous amount of attention over the last two decades. In recent years, much of this attention has been focused on various energy applications, in particular, in the field of renewable energy, such as water splitting and fuel cells, and also organic solar cells. The applications of carbon nanostructures take advantage of the intrinsic catalytic properties of modified carbon nanostructures, their excellent applicability as anchoring support for various metallic nanoparticles or the use of functional groups on fullerenes to increase their solubility for solution processing. This Special Issue of Nanomaterials will attempt to cover the recent advancements in the research of carbon nanostructures for energy applications, such as water splitting, fuel cells, and solar cells with a focus on the modification of carbon nanostructures by various functional groups, defects and/or dopants. Prof. Dr. Thomas Wågberg Guest Editor Nanomaterials (ISSN 2079-4991) Impact factor 3.553 Deadline for manuscript submissions: 15 September 2018 For more information see the journal's flyer Visit also the journal website
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
Nano for Energy group
Categories
All
Featured publications![]() Comprehensive Study of an Earth-Abundant Bifunctional 3D Electrode for Efficient Water Electrolysis in Alkaline Medium.
ACS Appl. Mater. Interfaces, 2015, 7, 28148 ![]() ![]() Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets.
ACS Nano, 2015, 9, 10516 ![]() Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries.
J. P. Sources, 2015, 279, 581 .Self-Assembly Synthesis of Decorated Nitrogen-Doped Carbon Nanotubes with ZnO Nanoparticles: Anchoring Mechanism and the Effects of Sulfur.
J. Phys. Chem. C, 120, 27849 (2016) Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant.
Sci Rep. 2016; 6: 23183. Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles.
Catal. Sci. Technol., 2016, 6, 1393-1401 Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway.
Nano Res. (2016) 9: 1956. |