THE NANO FOR ENERGY GROUP
  • Home
  • Our latest work
  • Publications
  • About us

Synergistic Effect between the Atomically Dispersed Active Site of Fe-N-C and C-S-C for ORR in Acidic Medium

9/4/2017

0 Comments

 
In this occasion, we investigated a sulfur-doped Fe-N-C (Fe/SNC) catalyst with a thiophene-like structure (C-S-C) that reduces the electron localization around the Fe center and improves the interaction with oxygenated species. The observed synergistic effect makes the Fe/SNC catalyst exhibits better ORR activity than sulfur free catalyst (Fe/NC) in 0.5 M H2SO4. The results were published in the journal of Angewandte Chemie International Edition.

Hangjia Shen,  Eduardo Gracia- Espino, Jingyuan Ma, Ketao Zang, Jun Luo,  Le Wang, Sanshuang  Gao, Xamxikamar Mamat, Guangzhi Hu, Thomas Wagberg, and Shaojun Guo.
Angew. Chem. Int. Ed. (2017), DOI: 10.1002/anie.201706602
Picture

Abstract

Various advanced catalysts of sulfur doped Fe-N-C materials have been recently designed for oxygen reduction reaction (ORR), however, the enhanced activity is still controversial and usually attributed to differences in surface area, improved conductivity, or to uncertain synergistic effects. Here, a sulfur-doped Fe-N-C catalyst (denoted as Fe/SNC) derived via a template sacrificing method is presented. The incorporated S gives a thiophene-like structure (C-S-C), reduces the electron localization around the Fe center, improves the interaction with oxygenated species, and therefore facilitates the complete 4e- ORR in acid solution. This synergistic effect makes the Fe/SNC catalyst exhibits much better ORR activity than sulfur free catalyst (Fe/NC) in 0.5 M H2SO4.
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Nano for Energy group

    Categories

    All
    Batteries
    C60
    DFT Calculations
    Electrocatalysis
    Graphene
    Hydrogen Evolution
    Mesoporous Carbon
    Nanofibers
    Nanoparticles
    Nanorods
    Nanotubes
    Oxygen Evolution
    Oxygen Reduction
    Palladium
    Photocatalysis

    Featured publications

    Picture
    Comprehensive Study of an Earth-Abundant Bifunctional 3D Electrode for Efficient Water Electrolysis in Alkaline Medium.
    ACS Appl. Mater. Interfaces, 2015, 7, 28148


    Picture
    C60/Collapsed Carbon Nanotube Hybrids - A Variant of Peapods.
    Nano Lett., 2015, 15 (2), pp 829–834

    Picture
    Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets.
    ACS Nano, 2015, 9, 10516

    Picture
    Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries.
    J. P. Sources, 2015, 279, 581

    Picture
    .Self-Assembly Synthesis of Decorated Nitrogen-Doped Carbon Nanotubes with ZnO Nanoparticles: Anchoring Mechanism and the Effects of Sulfur.
    J. Phys. Chem. C, 120, 27849 (2016)
    Picture
    Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant.
    Sci Rep. 2016; 6: 23183.
    Picture
    Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles.
    Catal. Sci. Technol., 2016, 6, 1393-1401

    Picture
    Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway.
    Nano Res. (2016) 9: 1956.

    RSS Feed

Contact Information

Prof. Thomas Wågberg
Department of Physics, Linnaeus väg 24
Umeå University, 901 87 Umeå SE
email:  thomas.wagberg@physics.umu.se
Site administrator: Eduardo Gracia (eduardo.gracia@umu.se)
Links
Publications
Our latest work
Group members
Umeå University
  • Home
  • Our latest work
  • Publications
  • About us