THE NANO FOR ENERGY GROUP
  • Home
  • Our latest work
  • Publications
  • About us

Electrostatically Driven Nanoballoon Actuator

10/9/2016

0 Comments

 
This time we show that collapsed carbon nanotubes can be easily and reliable cycled between their inflated and collapsed states by electrically charging the nanotubes forming nanoballoon actuators. The work has been developed in close collaboration with the research group of Prof. Zettl from the University of California, Berkeley. The results have been published in the journal of Nano Letters.
Hamid Reza Barzegar, Aiming Yan, Sinisa Coh, Eduardo Gracia-Espino, Gabriel Dunn, Thomas Wågberg, Steven G. Louie, Marvin L. Cohen, and Alex Zettl.
Nano Lett., DOI: 10.1021/acs.nanolett.6b02394
Picture

Abstract

We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Nano for Energy group

    Categories

    All
    Batteries
    C60
    DFT Calculations
    Electrocatalysis
    Graphene
    Hydrogen Evolution
    Mesoporous Carbon
    Nanofibers
    Nanoparticles
    Nanorods
    Nanotubes
    Oxygen Evolution
    Oxygen Reduction
    Palladium
    Photocatalysis

    Featured publications

    Picture
    Comprehensive Study of an Earth-Abundant Bifunctional 3D Electrode for Efficient Water Electrolysis in Alkaline Medium.
    ACS Appl. Mater. Interfaces, 2015, 7, 28148


    Picture
    C60/Collapsed Carbon Nanotube Hybrids - A Variant of Peapods.
    Nano Lett., 2015, 15 (2), pp 829–834

    Picture
    Fabrication of One-Dimensional Zigzag [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Nanoribbons from Two-Dimensional Nanosheets.
    ACS Nano, 2015, 9, 10516

    Picture
    Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries.
    J. P. Sources, 2015, 279, 581

    Picture
    .Self-Assembly Synthesis of Decorated Nitrogen-Doped Carbon Nanotubes with ZnO Nanoparticles: Anchoring Mechanism and the Effects of Sulfur.
    J. Phys. Chem. C, 120, 27849 (2016)
    Picture
    Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant.
    Sci Rep. 2016; 6: 23183.
    Picture
    Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles.
    Catal. Sci. Technol., 2016, 6, 1393-1401

    Picture
    Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway.
    Nano Res. (2016) 9: 1956.

    RSS Feed

Contact Information

Prof. Thomas Wågberg
Department of Physics, Linnaeus väg 24
Umeå University, 901 87 Umeå SE
email:  thomas.wagberg@physics.umu.se
Site administrator: Eduardo Gracia (eduardo.gracia@umu.se)
Links
Publications
Our latest work
Group members
Umeå University
  • Home
  • Our latest work
  • Publications
  • About us